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accepted down to a cut-off value of 4.0, and below 
this value the le'lc would be eliminated if lel < 1.0 and 
accepted down to le '1c>2-8 if Icl >3.0. The numbers 
used for criteria (a), (b) and (c) with myoinositol are 
larger than those for napthalene because the number 
of atoms in the asymmetric unit is larger and the le'lc 
values are larger for myoinositol. The numbers used 
here in the application of the criteria are evidently 
somewhat arbitrary but should serve as a guide. It is 
not clear at this point how useful the introduction of 
additional statistical considerations would be for the 
present, and therefore the investigation of such matters 
is deferred. It might be pointed out however that 
further study along such lines would include considera- 
tions such as the number of atoms in the asymmetric 
unit, the relative amount of negative scattering matter, 
the number of terms contributing to a particular cal- 
culation and the variance of the individual terms. 

Procedures for phase determination are particularly 
dependent in their initial stages on relationships among 
the largest le'l values. Also, it is desirable to have at 
least ten phases among the larger le'l values per atom 
in the asymmetric unit for the computation of a Fou- 
rier series. Thus the success of a procedure for struc- 
ture determination, based upon the calculations pre- 
sented here, depends on how well the computed larger 
[e'lc are correlated with the larger le'lo. 

Aside from phase considerations, it is apparent that 
useful information should derive from comparing Pat- 
terson functions computed from the coefficients I~12 
and I~'12 when both positive and negative scattering 
matter are present. 

Mr Stephen Brenner wrote the computing programs 
and carried out all the calculations. I am indebted to 
him for his very fine cooperation. The thought to 
investigate this problem arose from a conversation with 
Dr Carroll K.Johnson of the Oak Ridge National 
Laboratory. 
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The relationship between the methods of Dickerson (1959), Rollett & Sparks (1960), and Hamilton, 
Rollett & Sparks (1965) (HRS) is discussed, together with a short account of why the first two methods 
are unsatisfactory. An alternative iterative method (the method of 'shortest path') of solving the layer 
scaling equations of HRS is given which converges faster than the solution given by HRS. An exact 
solution of the equations of HRS is given which may be applied to situations where a simple weighting 
scheme may be used. The method of 'shortest path' may be important in protein crystallography where 
setting up the normal matrix may mean scanning 100000 reflexions and therefore the speed of conver- 
gence is of paramount importance. 

Introduction 

The purpose of this paper is threefold: 
(a) To give an account of the relationship between 
the methods of Dickerson (1958), Rollett & Sparks 
(1960), and Hamilton, Rollett & Sparks (1965). 

(b) To present an alternative iterative method (the 
method of 'shortest path') of solving the scaling equa- 
tions of Hamilton, Rollett & Sparks (1965; we will refer 
to this paper as HRS), which converges faster than the 
solution given by these authors. The method of short- 
est path has the additional advantages that no fudge 
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factors need to be applied to the shifts, and no ad hoc 
decision need be made as to which film scale factor 
should be fixed. 
(c) To give an exact solution to the equations of 
HRS which may be applied to situations where a simple 
weighting scheme may be used. 

A comparative account of existing methods 

Since we follow the methods of HRS closely, the first 
part of the following will, of necessity, be a restatement 
of the conclusions of HRS. 

The first step in the layer scaling problem is to define 
the observational equations (i.e. that set of equations 
which we wish to be satisfied as exactly as possible by 
the right set of scale factors). The scheme proposed by 
Rollett & Sparks is to write 

l/o9nz(KzF~-Fh2)=~onz h =  1, H ,  /=  1, L (1) 

where h is a subscript used to represent the Miller in- 
dices for H reflexions on L layers, cont is the weight of 
the reflexion with index h on layer l, Kz is the scale factor 
of layer l, Fh] is the corrected intensity, F~, is the weight- 
ed mean of the scaled F 2, and ~0hz is the standardized 
error. 

We define a quantity ~, where 

~¢ = Z S (flh2l h 1 
and wish to find that set of K's which make ~, a mini- 
mum. The weights are given by 

o)~z= 1/K2a~a (2) 

K ~  constant  

onstant 

K; 

/(12+ K2 2= 1 

Fig. 1. A geometrical illustration of the scaling of two films: 
The axes are the scale factors KI and K2. The equations of 
Rollett & Sparks (1960) for the sum of squares of error (~u) 
are homogeneous of degree two. Thus a contour of constant 
error is an ellipse centred on the origin. The point of mini- 
mum (zero) error is the trivial point K1 = K2 = 0. To find a 
non-trivial solution Dickerson (1959) puts K1 =constant or 
Kz=constant giving as solutions either A or B. The Rollett 
& Sparks constraint (KIZ+K22=l) gives as solution the 
point C. 

where aht is the standard deviation of F~. The equa- 
tions (1) have the advantage of being highly sym- 
metrical and simple functions of the weights. 

Rollett & Sparks (1960) proceed by assuming that 
the weights can be put equal to one or, at least, are 
independent of the scale factors Kz. Therefore they take 
as the observational equations 

KzF~ - F2h=~Ohz h =  l, H , I= I, L . (3) 

Since the equations (3) are linear functions of the scale 
factors, the quantity ~, is a quadratic function (in two 
dimensions, the contours of constant ~, are concentric 
ellipses) of the scale factors, and if we are dealing with 
only two films will have the form shown in Fig. 1. Now 
the normal equations (the equations obtained by setting 
O~u/OKt=O for each Kz in order to find the best set of 
K's) derived from (1) are homogeneous. The minimum 
value of gt is ~u = 0  with K 1 . . . K L = 0 .  Therefore they 
will only give a non-trivial solution with the addition 
of a constraint. The equations of Dickerson (1959) 
share this property of being homogeneous and are con- 
veniently discussed with those of Rollett & Sparks. 

The constraint used by Dickerson is to set one scale 
factor equal to a constant (e.g. K1 = constant in Fig. 1). 
If we consider for simplicity a two-film problem then 
we must find the smallest value of ~, on the line K~ = 
constant (Fig. 1), which is the point A. Unfortunately, 
if we choose to make K2 = constant we arrive at values 
for the scale factors given by the coordinates of the 
point B, which are different from those of A. To avoid 
this problem Rollett & Sparks chose to make the con- 
straint 

K~ + K~= 1 (4) 

and therefore arrive at the point C. HRS point out 
that this is just as arbitrary as putt ing/(1 or K2 equal 
to one, and they go on to give a method which avoids 
these difficulties. 

The reason why the method of Rollett & Sparks 
breaks down may be understood as follows. If we use 
the observational equations (3), the effect of halving 
/(1 and/ (2  (keeping their ratio constant) is to quarter 
the value of gt. Therefore it is always possible to obtain 
smaller values of ~, by reducing the scale factors while 
keeping their ratio constant. Hence the need for a con- 
straint. Let us consider a third film which is represented 
only by a few weak spots. The constraint is now 

K 2 + K~ + K~ = 1. (5) 

Since (3) is weak its contribution to the sum of squares 
of the errors ~u is numerically small. The absolute 
magnitude of ~u can be decreased by making K1 and K2 
as small as possible. On account of the constraint this 
can only be done by making K3 relatively large, but 
this is allowed because its magnitude has only a small 
effect on the error ~,. Thus we see that weak films in a 
batch scaled by Rollett & Sparks's method will have 
scale factors which are systematically too large. 

The solution to this predicament lies in the form of 
the equations (1). If we halve the values of all the K's 



888 AN A L T E R N A T I V E  M E T H O D  OF S O L V I N G  THE L A Y E R  S C A L I N G  E Q U A T I O N S  

in equation (1) we do not affect the value of the error 
~u, since the weights also depend upon the scale factors. 
Therefore, if we plot the error as a function of the scale 
factors it must consist of a set of radial lines (Fig. 2). 
g/is a homogeneous function of the K's but of degree 
zero rather than degree two as it is in the equation 
(3) (the form used by Rollett & Sparks). Therefore no 
arbitrary constraint is necessary in solving for the 
minimum value of ~u, as long as we allow the weights 
to be explicit functions of the scale factors. 

To solve the problem we must find an algorithm to 
locate that radial line on which ~u is a minimum. A 
method of doing this has been given by HRS. We give 
an alternative method below. 

An alternative iterative method for solving the 
sealing equations of Hamilton, Rollett & Sparks 

In the following we find it algebraically more conveni- 
ent to work with the inverse scale factor Gz (= 1/Kz). 
This notation was introduced by HRS. In the following 
we use subscript h to denote Miller indices, l to denote 
film number, and m to denote film number in a second 
summation. Rewriting equations (1) with G for K, we 
have 

1 
..... (F~--alF2)=~ahz h = l , H ,  l = l , L .  (6) Cr hl 

We wish to minimize ~, with respect to the inverse scale 
factors, where 

g t = X X  1 
h , ~ay, ( F } a - G t F ~ ' ) z "  ( 7 )  

Now 

z-% 
F~__ m a~m F~'~ 

2 

/7.2. 
and putting flhz- -n~ 

~hl 
we have 

and ~hz-- 
G~ 
tThl 

(8) 

~ , = X X  h l - - ~  (9) 
h l • " 2  m 

m 

Symbolically, let us write equation (9) as 

~,--XE~ (lO) 
¢t 

to express the fact that it is a sum of squares (a stands 
for a summation over h and l). To find the minimum 
value of ~ we set each derivation with respect to the 
variable G equal to zero, i.e. 

cSg/ = 0  l=1  L (11) 
OG~ 

in turn. 
If we have starting values for the set Gz.then we may 

use the Taylor expansion for ~u (where 2G is the shift 
in G). 

~bt ~ ~b¢O-~ "~ ( t~_~Gl ) AG1..~_ ~ ,~ !2 ( ~2~¢ .) 4GIAGm . 
l o t,,, cgG~cgGm o 

+ etc. (12) 

We may minimize ~,-~'0 (let us call this ~,') in the 
normal way using conditions (11) and find that the 
condition is given by 

A A G = r  (13) 

where the L × L matrix A has elements 

1 c%~ 
cgG~cgGm o 

and the column vector r has elements 

1 ( ~ u )  (14a) 
- TG?0 

Now consider the case ~u = £  E~ z. 
c, 

Then 

c92 2 E~ c~E~ ~E~ 82E~ 
OGzOGm - 2  8Gt cgGm + 2E~ c~Gz~G~n" (15) 

If the quantities E, are linear functions of the Gz (as 
they will be near a minimum of 9,) we may put the 
second term in equation (12) equal to zero, whereupon 
(13) become the familiar normal equations with 

Alto= 
7 \ aGz]o \aGm]o 

( aE~ ] (16) 

r z = - X  E~ \ - ~ z  10 

Putting these equations in the form of (9) instead of 
the symbolic form (10), we may evaluate the derivatives 
in (16) and find that 

K2 

= c o n s t a n t  

Fig. 2. The equations of HRS for the sum of squares of error 
(~,) are homogeneous of degree zero, thus contours of con- 
stant ~, have the form of radial lines. If all the values of the 
K's are proportionately increased or decreased, any value 
of ~ remains unaltered. Therefore to solve these equations 
no extra constraints are required. 
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Aem=X 
h 

and 
f 

[f 
+ 

o-A l 

[FT,,,,Ge+ 

[7 o..Z  J 

(17) 

[r GkF~k ] GlcF2k ] 2 

" [{7-}J 
Now the E,'s are homogeneous functions of Gz of 

degree zero. If the value about which the Taylor ex- 
pansion is made is given by the vector G ° (G ° are the 
starting values) we have 

~r G o [ 8E~ ] =0  (Euler's theorem). (19) 
t L c~Gz J o 

Hence 

~r ~ [ SE~ ~ (SEmi GO = r AZmGo=O 
t ~ \8Gm/o tOGe/o l 

m = l , L .  

Therefore the vector G ° is an eigenvector of A of eigen- 
value zero. Therefore A has zero determinant, and 
equations (13) are either inconsistent or admit many 
solutions differing by a multiple of G °. The latter is the 
case because (19) can be written 

~r GOre = 0 (19a) 
# 

showing that r is orthogonal to Go. 

Returning to Fig. 2, we may now see the geometrical 
meaning of the approximation of using the truncated 
Taylor expansion for g/in place of the full expansion 
(equation 12), or in other words, of using the quadratic 

form g / =  AGTAAG (20) 

in place of the true form (9). We have shown above that 
A has one zero eigenvalue corresponding to G °, there- 
fore (20) represents an open ended cylinder and lines 
of constant ~r are parallel to the vector G °. The effect 
of the approximate expression (12) therefore has been 
to move the origin of Fig. 2 to infinity so that sets of 
radial lines become parallel. To solve the problem we 
wish to find the axis of this cylinder. 

The most efficient way to find the axis of the cylinder 
from a starting point (e.g. point Go in Fig. 3) is to inter- 
sect the cylinder axis by the shortest path from Go 
(i.e. at right angles to Go). In comparison, the method 
of HRS (whose setting up of the problem is formally 
identical with that given above) is to proceed along any 
path Gz=constant until it intersects the axis of the 
cylinder (see Fig. 3). As long as the linear Taylor ex- 
pansion is a good approximation for the observational 
equations, the difference is of little importance, but if 
the starting value is well away from the axis of the 
cylinder then the approximation (12) will be better for 
small shifts, and therefore it is better to use the shortest 
path. The method of HRS may produce inordinately 
large shifts if Gz = constant is nearly parallel to the axis 
of the cylinder, which will happen if film l is weak. To 
avoid problems of this kind (especially attempts of G 
to move out of the positive quadrant) HRS find it 
necessary to place limits on the values of the shifts 
during refinement. Notice that the constraint used by 
HRS to solve the equations is the same as Dickerson's, 
but does not now lead to different solutions for dif- 
ferent constraints as applied to different equations. 

• 
u/ = m i n i m u m  

°°,°" 

G 2 ~ .  • • • ..." • ," • • • • . ." 

Fig. 3. A linear approximation to the equations of HRS may be obtained by a Taylor expansion. The effect of this approximation 
is to make contours of constant error into parallel lines rather than radial lines. Starting from a trial solution GO(G~ = 1]Kd we 
may reach the line of minimum error by an infinite number of paths. HRS use the path G~ = constant and arrive at a solution 
B. We give a method for finding the shortest path to the point A. The points A and B are equivalent except for an arbitrary 
scalar multiplier. 
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The computational procedure equivalent to the 
geometrical method described above (the 'shortest 
path' method) is as follows: 

(1) Compute A (of order L) (equation 17). 

(2) Compute r (equation 18). 

(3) Diagonalize A and find the matrix of the eigen- 
vectors p. Put the eigenvector of smallest eigenvalue 
at the L'th (last) position. 

We have AA G = r; (21) 

therefo re lip rAllli TAG = r .  (22) 

Let us call the diagonalized matrix D(=llrAp),  put 
IITAG=AG ' and pTr=r '  

therefore DAG' = r ' .  (23) 

The smallest element of D is theoretically zero and in 
practice will be very near zero. 

(4) Solve for AG'I...G'L-: and put AGL=O [this is es- 
sentially the method of Diamond (1958)]. 

(5) Rotate back to find AG(=IIAG'). 

(6) Put new G ° = G ° + A G .  

We show the results of our method [Table l(a)] com- 
pared with the method of HRS on a 14-parameter prob- 
lem (HRS) [Table l(b)]. In each case the starting values 
were unity. Table l(b) shows the result of using HRS 
method and fixing film 5, and Table l(c) shows the 
effect of fixing film 14 (in order to facilitate comparison 
the scale factors are rescaled after each cycle to make 
G: = 1). After cycle (3), root mean square error of l(a) 
is 0.004345, whereas for l(b) we have 0.04172 and for 
l(c) 0.02677. The largest error of l(a) is 0.00921 whereas 
the largest error of l(b) is 0.09782 and of l(c) is 0.06639 
all in film 6. 

The convergence of l(a) is appreciably faster than 
l(b) or l(c) and this may be important in protein crys- 
tallography, where setting up the normal matrix may 
mean scanning 100000 reflexions and therefore speed 
of convergence is of paramount importance. 

In the method of HRS fixing a film is equivalent 
to crossing out the appropriate row and column in the 
normal matrix and right hand side and solving the rest. 
By doing this we should produce a normal matrix which 
has a non-zero determinant and can therefore be solved. 
However, if the film chosen is poorly linked or is very 
weak the resulting determinant is still very near zero, 
and thus the solution is subject to problems of round- 
ing error and overflow. An example is shown in Table 
l(c). By fixing film 14 in the HRS test problem a slightly 
wrong scale factor for film 14 has been produced. Film 
14 has only 3 reflexions. Therefore it would seem to be 
best to fix a strong film when using the method of 
HRS. Note that no restrictions of any kind have been 
found necessary in using the method of shortest path. 

An exact solution for a simple weighting scheme 

Returning to equation (9), this may be simplified by 
taking together all terms corresponding to a given re- 
flexion h. This is most simply accomplished by con- 
sidering the variables ~z and flla, for each h, as points 
in space having L dimensions (L is number of layers). 
By applying the theorem of Pythagoras we find 

~,= S f12_ ' (24) 

l 

The first term on the right hand side of (24) is inde- 
pendent of the Gt's; therefore to minimize ~u we must 
maximize U where 

(Z ~nl/~hz) 2 
u =  z ' (25) 

l 

(X GzFt~/a,~) 2 

= Z" ~ (26) 
h Z G~/cr 3 

I 

We may find the maximum of U by setting each of 
the derivatives of U with respect to Gz equal to zero. If 
we attempt to do this with equation (26) we are led to 
an intractable set of equations. 

However, if the weights are all equal or can be writ- 
ten in the form xnyz (i.e. the product of a term depen- 
dent solely upon the reflexion index with one depen- 
dent solely upon the film number) we must maximize 

X (X GzF~) 2 
h I 

X G 2 (27) 
1 

This is equivalent to maximizing 

X (X GzF2) 2 (28) 
h l 

subject to the restriction 

2" G2= 1 (29) 
l 

and is, therefore, an eigenvalue problem. The solution 
is given by finding the eigenvector with the largest 
eigenvalue of the normal matrix with elements 

A z m =  S F ~ F ,  Zm . ( 3 0 )  
h 

The similarity of this solution to that given by Rol- 
lett & Sparks (1960) is apparent although we are at- 
tempting to find the maximum eigenvalue rather than 
the minimum, and the diagonal terms are different. 

The initial attractiveness of the above solution, 
which has the advantages of the method of Rollett & 
Sparks, must be tempered by the realization that it 
cannot deal with the situation of many layers each of 
which intersects another layer only along a common 
row. In this common situation each film or set of data 
contains only a fraction of the total reflexions and 
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f requent ly  has no da ta  in c o m m o n  with some o ther  
layer. We normal ly  deal  with this by put t ing  the weights  
equal  to zero for reflexions not  represented on  this 
layer. However ,  we have m a d e  the restr ict ion tha t  all 
weights  must  be uni ty and  cannot ,  therefore,  use this 
trick. Unfo r tuna t e ly  this makes  the  above  m e t h o d  un- 
usable in mos t  c i rcumstances.  

The  utility of  the m e t h o d  we have jus t  given lies in 
scaling films toge ther  with m a n y  c o m m o n  data,  and  
therefore  it is par t icular ly useful for two films. W h e t h e r  
the loss of  the weight ing  scheme is i m p o r t a n t  mus t  be 
decided by experience.  At  least the m e t h o d  is free f rom 
systematic  errors. 

We are pleased to acknowledge  a n u m b e r  of  helpful  
discussions of  the  scaling p rob lem with Dr  J. S. Rollet t .  
We are grateful  to Dr  Rol le t t  for p rov id ing  the test 
data  for the 14-parameter  p roblem.  We are grateful 
for the  advice of  our  colleagues,  in par t icular  tha t  of  
Dr  R. D i a m o n d .  
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Film Cycle numbers 
number 1 2 

1 1.00000 1.00000 
2 1.02642 1.11545 
3 1.00909 1.07462 
4 0.83554 0.72818 
5 0.99103 1.11814 
6 1.03762 1.17104 
7 0.39557 0.23758 
8 0.39728 0.22931 
9 0.38432 0.21685 

10 0.38749 0.20516 
11 0.47485 0.40127 
12 0.48843 0.45682 
13 0.88923 0.83178 
14 0.74247 0.76882 

Table  (1 a). Method of shortest path 

3 4 5 6 7 8 9 
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1-00000 
1.15616 1.16046 1.16179 1 . 1 6 1 8 5  1.16186 1 - 1 6 1 8 6  1.16186 
1.12380 1 . 1 2 8 2 1  1.12830 1.12829 1.12829 1.12829 1.12829 
0.73241 0.73512 0.73531 0.73531 0.73531 0 . 7 3 5 3 1  0.73531 
1.17168 1 - 1 7 3 6 8  1 . 1 7 4 0 1  1.17400 1 - 1 7 4 0 0  1.17400 1.17400 
1.25723 1 . 2 6 7 0 9  1.26840 1 . 2 6 8 4 3  1.26844 1.26844 1.26844 
0.22879 0-22997 0.23002 0.23002 0.23002 0.23002 0.23002 
0.21186 0.21288 0.21301 0.21302 0.21302 0.21302 0.21302 
0.19853 0.19930 0.19936 0.19936 0.19936 0.19936 0.19936 
0.16919 0.16504 0.16498 0.16498 0.16498 0.16498 0.16498 
0.41541 0.41567 0.41577 0.41577 0.41577 0.41577 0.41577 
0.47808 0.47793 0.47804 0.47804 0.47804 0.47804 0.47804 
0-84201 0.84443 0.84465 0.84465 0.84465 0.84465 0.84465 
0.76767 0.77219 0.77264 0.77267 0.77266 0.77267 0-77267 

Table  l(b). Method of Hamilton, Rollett & Sparks 
Fixing film 5 

Film Cycle numbers 
number 1 2 3 4 5 6 7 8 9 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.01602 1.05890 1.11200 1.14936 1 - 1 5 9 9 6  1 . 1 6 1 6 8  1 - 1 6 1 8 5  1 - 1 6 1 8 6  1.16186 
3 1.00555 1 - 0 3 2 9 6  1 . 0 7 7 3 3  1-11535 1.12730 1 . 1 2 8 2 8  1.12829 1.12829 1.12829 
4 0.89243 0.79813 0.74575 0"73334 0.73463 0-73528 0 . 7 3 5 3 1  0 " 7 3 5 3 1  0-73531 
5 0.99449 1 . 0 4 2 3 6  1 . 1 1 3 3 3  1 - 1 6 1 2 9  1 . 1 7 2 8 5  1 . 1 7 3 9 7  1 - 1 7 4 0 1  1.17402 1.17401 
6 1.02271 1 . 0 8 2 8 8  1.17062 1 . 2 4 2 6 5  1 - 2 6 5 5 3  1 - 2 6 8 2 7  1 . 2 6 8 4 3  1 - 2 6 8 4 4  1.26844 
7 0.51659 0.32619 0.25222 0.23170 0.22988 0 - 2 3 0 0 1  0.23002 0.23002 0.23002 
8 0.51838 0.32164 0.24100 0.21581 0-21284 0.21299 0.21301 0.21302 0.21302 
9 0.50478 0.30742 0.22733 0.20226 0.19925 0.19935 0.19936 0-19936 0.19936 

10 0.50813 0.30052 0.20935 0.17377 0.16547 0.16498 0.16498 0.16498 0-16498 
11 0.59621 0.45986 0.41981 0.41432 0.41543 0.41576 0-41577 0-41577 0.41577 
12 0.60924 0.49224 0.47177 0.47533 0.47772 0.47804 0.47804 0"47804 0"47804 
13 0.92912 0.87232 0.84431 0.84134 0.84394 0-84462 0.84465 0 " 8 4 4 6 5  0"84465 
14 0 " 8 2 4 8 8  0.77431 0 " 7 6 2 0 6  0.76736 0.77166 0.77257 0.77264 0.77265 0.77265 

Table  l(c). Method of Hamilton, Rollett & Sparks 
Fixing film 14 

Film Cycle numbers 
number 1 2 3 4 5 6 7 8 9 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.02026 1 - 0 7 2 4 9  1.12939 1.15602 1.16098 1 . 1 6 1 8 1  1.16186 1.16186 1.16186 
3 1.00700 1.04264 1.09354 1 - 1 2 3 1 9  1 - 1 2 8 0 9  1.12830 1.12829 1 - 1 2 8 2 9  1.12829 
4 0.86817 0.77571 0.73602 0.73337 0.73508 0.73531 0.73531 0 - 7 3 5 3 1  0.73531 
5 0.99307 1 - 0 5 8 3 1  1 . 1 3 6 7 1  1 . 1 6 9 2 8  1.17367 1.17400 1.17400 1.17400 1.17400 
6 1.02878 1 - 1 0 3 8 5  1 . 2 0 2 0 5  1 - 2 5 7 1 9  1.26740 1.26840 1.26844 1.26844 1.26844 
7 0.45896 0.29447 0.23898 0.22990 0.22996 0.23002 0.23002 0.23002 0.23002 
8 0.46074 0.28870 0-22596 0.21316 0.21291 0 . 2 1 3 0 1  0.21302 0.21302 0.21302 
9 0.44724 0.27502 0.21256 0.19963 0.19930 0.19936 0.19936 0.19936 0.19936 

10 0.45056 0.26646 0.19153 0-16832 0.16505 0.16498 0.16498 0.16498 0.16498 
11 0.53960 0-43578 0.41412 0.41467 0.41566 0.41577 0.41577 0.41577 0.41577 
12 0.55309 0.47345 0 . 4 7 1 3 1  0.47675 0.47795 0.47804 0.47804 0.47804 0.47804 
13 0.91232 0.85873 0.84009 0.84245 0.84441 0.84465 0-84465 0.84465 0-84465 
14 0.78942 0.76883 0.76490 0.77157 0.77529 0.77420 0.77465 0.77457 0.77456 


